Skip to contents

Nutritional information and manufacturer data for 70+ popular US breakfast cereals

Usage

cereal

Format

A matrix containing 77 observations and 16 attributes.

name

name of cereal

manuf

manufacturer of cereal, coded into seven categories: "A" for American Home Food Products, "G" for General Mills, "K" for Kelloggs, "N" for Nabisco, "P" for Post, "Q" for Quaker Oats, and "R" for Ralston Purina

type

cold or hot

calories

calories per serving

protein

grams of protein

fat

grams of fat

sodium

milligrams of sodium

fiber

grams of dietary fiber

carbo

grams of complex carbohydrates

sugars

grams of sugars

potass

milligrams of potassium

vitamins

vitamins and minerals - 0, 25, or 100, indicating the typical percentage of FDA recommended

shelf

display shelf (1, 2, or 3, counting from the floor)

weight

weight in ounces of one serving

cups

number of cups in one serving

rating

a rating of the cereals

Source

https://lib.stat.cmu.edu/datasets/1993.expo/

References

Reza Mohammadi (2025). Data Science Foundations and Machine Learning with R: From Data to Decisions. https://book-data-science-r.netlify.app.

Examples

data(cereal)
str(cereal)
#> 'data.frame':	77 obs. of  16 variables:
#>  $ name    : Factor w/ 77 levels "100% Bran","100% Natural Bran",..: 1 2 3 4 5 6 7 8 9 10 ...
#>  $ manuf   : Factor w/ 7 levels "A","G","K","N",..: 4 6 3 3 7 2 3 2 7 5 ...
#>  $ type    : Factor w/ 2 levels "cold","hot": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ calories: int  70 120 70 50 110 110 110 130 90 90 ...
#>  $ protein : int  4 3 4 4 2 2 2 3 2 3 ...
#>  $ fat     : int  1 5 1 0 2 2 0 2 1 0 ...
#>  $ sodium  : int  130 15 260 140 200 180 125 210 200 210 ...
#>  $ fiber   : num  10 2 9 14 1 1.5 1 2 4 5 ...
#>  $ carbo   : num  5 8 7 8 14 10.5 11 18 15 13 ...
#>  $ sugars  : int  6 8 5 0 8 10 14 8 6 5 ...
#>  $ potass  : int  280 135 320 330 -1 70 30 100 125 190 ...
#>  $ vitamins: int  25 0 25 25 25 25 25 25 25 25 ...
#>  $ shelf   : int  3 3 3 3 3 1 2 3 1 3 ...
#>  $ weight  : num  1 1 1 1 1 1 1 1.33 1 1 ...
#>  $ cups    : num  0.33 1 0.33 0.5 0.75 0.75 1 0.75 0.67 0.67 ...
#>  $ rating  : num  68.4 34 59.4 93.7 34.4 ...